Defocused orientation and position imaging (DOPI) of myosin V.
نویسندگان
چکیده
The centroid of a fluorophore can be determined within approximately 1.5-nm accuracy from its focused image through fluorescence imaging with one-nanometer accuracy (FIONA). If, instead, the sample is moved away from the focus, the point-spread-function depends on both the position and 3D orientation of the fluorophore, which can be calculated by defocused orientation and position imaging (DOPI). DOPI does not always yield position accurately, but it is possible to switch back and forth between focused and defocused imaging, thereby getting the centroid and the orientation with precision. We have measured the 3D orientation and stepping behavior of single bifunctional rhodamine probes attached to one of the calmodulins of the light-chain domain (LCD) of myosin V as myosin V moves along actin. Concomitant with large and small steps, the LCD rotates and then dwells in the leading and trailing position, respectively. The probe angle relative to the barbed end of the actin (beta) averaged 128 degrees while the LCD was in the leading state and 57 degrees in the trailing state. The angular difference of 71 degrees represents rotation of LCD around the bound motor domain and is consistent with a 37-nm forward step size of myosin V. When beta changes, the probe rotates +/-27 degrees azimuthally around actin and then rotates back again on the next step. Our results remove degeneracy in angles and the appearance of nontilting lever arms that were reported.
منابع مشابه
DOPI and PALM Imaging of Single Carbohydrate Binding Modules Bound to Cellulose Nanocrystals
We use single molecule imaging methods to study the binding characteristics of carbohydrate-binding modules (CBMs) to cellulose crystals. The CBMs are carbohydrate specific binding proteins, and a functional component of most cellulase enzymes, which in turn hydrolyze cellulose, releasing simple sugars suitable for fermentation to biofuels. The CBM plays the important role of locating the cryst...
متن کاملIn situ imaging of single carbohydrate-binding modules on cellulose microfibrils.
The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of ...
متن کاملMyosin VI lever arm rotation: fixed or variable?
Two recent articles addressed the power-stroke of myosin VI molecules during stepping. Although both groups measured the angles of fluorescent probes attached on the myosin VI molecule lever arm using polarized fluorescence techniques, they differ about whether the myosin VI lever arm rotation is fixed or variable. Here we discuss the causes of the discrepancy between the two studies and the im...
متن کاملDefocused differential interference contrast microscopy imaging of single plasmonic anisotropic nanoparticles.
We present the defocused differential interference contrast (DIC) imaging of gold nanorods. We found that the scattered light and the defocus aberration play an important role in the formation of orientation-dependent DIC image patterns of a gold nanorod. Interestingly, the scattered light from a gold nanorod aligned closer to the polarization directions enables us to directly resolve its spati...
متن کاملFluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V.
Single molecule fluorescence polarization techniques have been used for three-dimensional (3D) orientation measurements to observe the dynamic properties of single molecules. However, only few techniques can simultaneously measure 3D orientation and position. Furthermore, these techniques often require complex equipment and cumbersome analysis. We have developed a microscopy system and synthesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 17 شماره
صفحات -
تاریخ انتشار 2006